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This paper describes a method for the determination of the flexible
modes of an air-breathing hypersonic vehicle. The method outlined here
takes into account changes in vehicle mass and structural temperature over
the duration of the vehicle’s trajectory. A simple sizing program is outlined
to estimate the vehicle volume, mass, and planform requirements for a dual-
cycle (rocket and scramjet) powered vehicle. It is shown that the varying
mass effects dominate the frequencies and mode-shapes over the structural
heating effects. We then discuss the effects of the structural modes on the
transmission zeros.

I. Introduction

The renewed interest in hypersonic vehicles (HSVs) stems from the U.S. Air Force’s desire
to achieve two objectives. The first is reliable and affordable access to space. The second is
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to respond quickly to serious threats around the globe. In each case, air-breathing hypersonic
vehicle concepts are being explored to achieve these goals. To enable affordable space access,
an HSV would likely comprise the second stage of a two-stage-to-orbit vehicle. The second
stage would accelerate from Mach 4 to Mach 15 using a scramjet. Beginning at Mach 15, the
remainder of the ascent would then occur under the power of a rocket engine to achieve orbit.
To achieve a prompt global strike capability, it is envisioned that a hypersonic cruise vehicle
would be launched from the continental United States to deliver conventional weapons to a
target anywhere in the world. Such an aircraft would possibly use either a turbine-based or
a rocket-based combined-cycle engine to accelerate to hypersonic speeds, at which point the
scramjet would take over for the remainder of the climb and cruise segments of the mission.

From the point-of-view of the flight controls engineer, there is little difference between
the two concepts as they each offer the same set of technological challenges with regards
to inner-loop and outer-loop control. Scramjet powered vehicles require an integrated air-
frame/propulsion system in order to optimize system performance. The level of integration
of the scramjet results in a system whose engine dynamics and performance are dependent
upon the aircraft’s angle-of-attack, Mach number, and altitude. The engine also has a sig-
nificant influence on the lift, drag, and pitching moment of the aircraft. Also, the structural
dynamics can have a significant effect on the engine performance. Deflection of the aircraft’s
forebody due to aerodynamic forces will change the apparent turn angle-of-the flow, thus
altering the pressure distribution along the forebody and perturbing the mass flow of air
through the engine. Capturing the effect of the structural dynamics are vital to designing a
robust control system. A controls based model has been developed by Bolender and Doman1

to study vehicle configurations early in the design cycle in order to identify any issues that
could affect the controllability of the vehicle and to optimize inner and outer-loop perfor-
mance. For this paper, we will focus on a cruise vehicle configuration (see Figure 1); however,
the results are general enough that they apply to an accelerator as well.

This paper describes a flexible mode analysis of an HSV that takes into account the
decrease in propellant mass over the course of its mission. As a first step, it is necessary
to size a vehicle that is capable of performing the specified mission. We outline a method
that initially sizes the vehicle to estimate the required structural and fuel masses given the
payload and cruise range requirements for a cruise-type HSV. An operational cruise HSV
would be expected to be designed to operate over a long range at high speed. This dictates
that a large fraction of the gross take-off weight of the vehicle must consist of propellant for
both the climb and cruise phases of the mission (it is assumed that the fuel requirements
during descent are insignificant). The mass properties of the vehicle will therefore change
considerably as the mission progresses and propellant is consumed. This will in turn cause
significant changes in the structural modes of the HSV.

The objective of the subsequent analysis is to determine the evolution of the natural
frequencies, as well as of the associated mode shapes. The approach taken here is the
assumed modes method ,2 a technique that makes use of the mode shapes of a simple structure
(e.g., a cantilever beam) as a set of basis functions that are then used to generate a set of
approximate mode shapes for the actual structure, and accounts for the actual mass and
stiffness distribution of the true structure. Typically, as the number of basis functions in
the model is increased, convergence of the first approximate natural frequencies and mode
shapes to the true frequencies improves rapidly. The assumed modes method not only allows
the effects of propellant depletion on the HSV natural frequencies and mode shapes to be
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quantified; it also allows one to study the effects of temperature on vehicle stiffness and the
associated changes in the modal characteristics.

Figure 1. X-43C Concept Vehicle

II. Trajectory Analysis and Vehicle Sizing

The design of hypersonic aircraft offers a unique set of challenges because they operate
over such a wide range of flight conditions. The primary challenge, however, lies in the
design of the propulsion system. Supersonic combustion ramjet (scramjet) propulsion is the
most studied approach for hypersonic speed domain, but it is only becomes practical when
the Mach number becomes greater than 5. The concepts for getting the aircraft airborne
and accelerated to the speed where the scramjet can be operated are seemingly endless. For
example, if we consider a two-stage-to-orbit (TSTO) vehicle, the HSV comprises the upper
stage of the launch system. The vehicle is boosted by a rocket-powered first stage to some
staging Mach number. The vehicles separate and the second stage continues its ascent while
being powered by a scramjet engine. At some point a rocket engine takes over again, and
continues to boost the vehicle to low-earth orbit. For cruise vehicles, combined-cycle engines,
either rocket-based or turbine-based, have been investigated as a means for propulsion. Some
of the concepts are single-flow path with an engine that can operate using different cycles.
Other concepts require multiple flowpaths and/or engines. The interested reader is referred
to Czysz, et.al.3 for a discussion of different propulsion system concepts and one approach
to the sizing of hypersonic aircraft.

Below, we approach the sizing of the vehicle in terms of the range and payload require-
ment. A simplified analysis is presented in Gregory, et.al.4 that assumes that the Breguet
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Range Equation can be applied over the entire trajectory using averaged values for specific
impulse, L/D, and velocity. This assumes that a majority of the flight is at the cruise con-
dition. While this is indeed the case for long trajectories, a slightly more rigorous approach
can allow one to evaluate how the trajectory design interacts with propulsion system and
aerodynamic efficiencies. However, our motivation is to estimate the fuel requirements along
the entire trajectory in order to estimate the mass properties of the vehicle at any flight con-
dition. For our purposes, it is assumed that the scramjet-powered ascent trajectory consists
of climbs at either constant dynamic pressure or constant Mach number and that the cruise
condition is at the same Mach number as the constant Mach climb segment. The rocket-
powered phase will be treated separately using the rocket equation and assumed losses in
ΔV in order to estimate the weight ratio.

A. Constant Dynamic Pressure Climb

We begin with the point-mass equations-of-motion for a vehicle flying over a flat earth. It is
assumed throughout this analysis that the thrust vector is aligned with velocity vector. We
will not consider the centripetal relief due to the high velocity and the altitude at which the
vehicle is flying. The “flat earth” assumption will give conservative estimates for range later
on.

V̇ =

(
Fn −D

W
− sin γ

)
g (1)

γ̇ =

(
L

W
− cos γ

)
g

V
(2)

ḣ = V sin γ (3)

ẋ = V cos γ (4)

Ẇ = −cTFn (5)

where V is the airspeed, Fn is the thrust, D is the drag, W is the weight, γ is the flight-path
angle (measured with respect to the horizon), g is the acceleration due to gravity, L is the
lift, x is the downrange, and cT is the thrust-specific fuel consumption and has units of
lbm/sec/lbf or 1/sec. The dynamic pressure is given by

q̄ =
1

2
ρ∞V 2 (6)

where ρ∞ is the freestream air density.
Imposing the constraint that q̄ is a constant specifies the velocity profile since the density

as a function of altitude is known. Differentiating q̄ with respect to altitude we have

dq̄

dh
=
V 2

2

dρ

dh
+ ρV

dV

dh
= 0 (7)

Solving for dV/dh gives

dV

dh
= −V

2

1

ρ

dρ

dh
(8)

4 of 22

American Institute of Aeronautics and Astronautics



If we assume that the density profile is an exponential function of altitude

ρ = ρ0 exp

(
−h− h0

hs

)
(9)

where ρ0 is the density at some reference altitude h0 and hs = RT0/g is the scale height
where T0 is the ambient temperature at the altitude h0. It can then be shown that

1

ρ

dρ

dh
= − 1

hs
(10)

Over the length of the trajectory, it is assumed that γ̇ ≈ 0 such that L/W = cos γ. Next,
we apply The Chain Rule to Equations 1 and 5. Beginning with Equation 1 we have:

V sin γ
dV

dh
=

(
Fn −D

W
− sin γ

)
g (11)

Collecting like terms and substituting W = L/ cos γ gives

(
1 +

V

g

dV

dh

)
sin γ =

Fn

W
− D

L
cos γ (12)

Solving for Fn/W gives

Fn

W
=

(
1 +

V

g

dV

dh

)
sin γ +

D

L
cos γ (13)

Applying The Chain Rule to Equation 5 gives

1

W

dW

dh
= − cT

V sin γ

Fn

W
(14)

Next, we substitute Equations 13, 8 and 10 into Equation 14 to give:

1

W

dW

dh
= −cT

[
D

L

cot γ

V
+

(
1 +

V 2

2ghs

)
1

V

]
(15)

Note that to integrate Equation 15 requires the velocity profile be given. From the dynamic
pressure, we know that the velocity is

V =

√
2q̄

ρ
(16)

Substituting for the density then gives

V =

√
2q̄

ρ0
exp

(
h− h0

2hs

)
(17)

Equation 17 can be simplified further if we define V0 =
√

2q̄/ρ0, giving

V = V0 exp

(
h− h0

2hs

)
(18)

5 of 22

American Institute of Aeronautics and Astronautics



Using Equation 18 and assuming that cT , L/D and γ are constant over the climb allows us
to integrate the Equation 15 analytically from an altitude of h1 to an altitude of h2, giving
us

ln

(
W2

W1

)
= hscT

(
D

L
cot γ + 1

)(
1

V (h2)
− 1

V (h1)

)
+
cT
2g

(
V (h2) − V (h1)

)
(19)

More accurate results can be obtained by letting cT , the lift, and the drag vary over the
trajectory segment while maintaining a constant flight path angle. In any case, the range
covered in this segment of the climb is easily calculated by integrating Equation 4, yielding

∫ h2

h1

cot γ dh = (h2 − h1) cot γ (20)

B. Constant Mach Climb

The procedure for computing the weight change in a constant Mach climb is similar to that
outlined above for a constant q̄ climb. The difference is that we impose the constraint that
Mach is a constant over some defined altitude range. The Mach number of the aircraft is
defined as

M =
V

a
(21)

where the speed-of-sound is given by a =
√
kRT , k = 7/5 is ratio of specific heats, and

R = 1716 ft2 s2/◦R is the gas constant for air. Differentiating Mach number with respect to
altitude gives

dM

dh
= 0 =

1

a

dV

dh
− V

a2

da

dh
(22)

Solving for dV/dh gives
dV

dh
= M

da

dh
(23)

The differential equation for the fuel flow as a function of altitude is found by substituting
Equations 13 and 23

1

W

dW

dh
= −cT

V

[
D

L
cot γ + 1 +

V

g

dV

dh

]
(24)

Multiplying the right-hand side of Equation 24 by a/a and simplifying gives:

1

W

dW

dh
= − cT

M

[
D

L

1

a
cot γ +

1

a
+
M2

g

dV

dh

]
(25)

To integrate Equation 25, we consider the following two cases: an isothermal layer of the
atmosphere and a linear temperature lapse rate. We will once again assume that cT , L/D
and γ are constant.

1. Case 1: da/dh = 0

Substituting da/dh = 0 and integrating gives us

ln
W2

W1

= − cT
M

(
cot γ

a

D

L
+

1

a

)(
h2 − h1

)
(26)
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2. Case 2: T = T0 + λ(h− h0)

For the case where the temperature varies linearly with altitude, it can be shown that the
speed-of-sound becomes

a =
√
kR[T0 + λ(h− h0)] (27)

Thus, when we differentiate with respect to altitude we get

da

dh
=
λkR

2a
(28)

Substituting and evaluating the integral gives us:

ln
W2

W1
= − cT

M

[
cot γ

L/D
+ 1 +

M2

2g
kRλ

]
2

kRλ

(
a(h2) − a(h1)

)
(29)

C. Level Cruise

For flight over a flat earth, the Breguet Range Equation is

ln
W2

W1
= −cT

V

D

L
x (30)

The range is the desired range minus the range covered in the climb to altitude: x =
xdes − xclimb.

D. Rocket Powered Accelerating Climb

We consider the case where the rocket-powered vehicle climbs while accelerating from rest
to the desired dynamic pressure. We will consider the vehicle to be capable of horizontal
take-off; however, we neglect the ground roll and corresponding acceleration to the lift-off
speed from rest since this comprises a very small part of the overall trajectory. As a first
approximation, we will have the vehicle begin its climb from rest, but at some constant flight-
path angle. The drag will be accounted for by adding a 10% ΔV to the final desired velocity,
which is the Mach 5 point on some constant dynamic pressure climb profile. The Mach 5
point is chosen because this is considered the lowest Mach number at which supersonic
combustion is feasible. To get the weight ratio for this segment of the flight, we simply use
The Rocket Equation:

W2

W1
= exp

(
−ΔV

Ispg

)
(31)

E. Determination of the Fuel Fraction

To determine the fuel fraction, we require the weight ratios on each segment of the trajectory.
The overall ratio of the final weight to the initial weight at take-off is then

Wf

W0
=
W1

W0

W2

W1
. . .

Wn

Wn−1
(32)

where n is the number of trajectory segments, W0 is the gross take-off weight, and Wf=Wn

is the weight at the end of the final segment.
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F. Vehicle Sizing

For our analysis, we will focus on a rocket-based combined-cycle engine. The vehicle will be
propelled by a rocket engine from take-off to Mach 5 and a dynamic pressure of 2000 psf.
At this point, the scramjet engine begins operation and continues a climb while holding the
dynamic pressure at 2000 psf. Once the aircraft reaches Mach 10, the aircraft holds this
Mach number constant until it reaches its cruise altitude. The aircraft then cruises at Mach
10 at 120,000 ft for the duration of the mission. The range requirement is assumed to be
8000 n.m. while carrying a 2,500 lb payload. It is assumed the Isp of the rocket-mode of
the combined cycle-engine is 375 lbf s/lbm, the lift-to-drag ratio L/D = 4.5, and the thrust-
specific fuel consumption of the scramjet is cT = 5.04 × 10−4lbm/(lbf s), which corresponds
to a scramjet Isp = 1985 lbf s/lbm.

From above, we have W1/W0 = 0.6432 at the end of the rocket-powered phase, W2/W1 =
0.7745 at the end of the constant dynamic pressure climb, W3/W2 = 0.9762 at the end of
the constant Mach climb. These three phases cover approximately 1125 n.mi., so our cruise
range will be approximately 6875 n.mi. The weight fraction of fuel burned at the end of the
cruise is then found using the Breguet Range Equation (Equation 30) is Wf/W3 = 0.6323
This gives a ratio of final weight to take-off weight of Wf/W0 = 0.3071. Thus, approximately
70% of the weight that the aircraft is lifting is attributed to fuel and oxidizer.

Sizing for the vehicle was done in a rather ad hoc manner in order to achieve a vehicle
layout that would be qualitatively reasonable. The purpose being to have a representative
vehicle to demonstrate the utility of the assumed modes approach for structural analysis. The
sizing was done using the relationships outlined in Czysz’s text.5 This particular approach
relies on empirical data to obtain relationships between volume, planform area, weight, etc.

Once the weight fraction above was obtained, we chose a value of Küchemann’s “Tau”:τ =
VTOT/(Splan)3/2 = 0.1. For an assumed planform area, the Operational Weight Empty is
approximated by OWE = 61.6(Splan)0.906. We chose a planform area of 5500 ft2, which gives
OWE=151,000 lb. From above, the gross take-off weight is approximately 500,000 lb. The
total volume is then 40,800 ft3.

G. Internal Volume Layout

A preliminary vehicle layout was performed to get an estimate of how the vehicle total
mass and the mass distribution changes as the fuel is used. Because the propulsion system
is assumed to be a “dual-mode” engine that is capable of operating as either a rocket or
a scramjet, an oxidizer tank is necessary for operation in the rocket mode. The fuel is
assumed to be LH2 and is contained in two tanks, one fore and one aft, that are assumed to
be drained in a manner to keep the movement in the center-of-mass location to a minimum.
The oxidizer, LO2, is in a centrally mounted tank. This placement was chosen in order to
keep the center-of-mass at a point that is in the neighborhood of 55% of the total vehicle
length. Subsystems were placed in the most forward and aft locations possible, while the
payload was assumed to be at the vehicle center-of-mass. A notional layout of the vehicle
internal volume is given in Figure 2.
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Sub-System

Sub-system

LH2 Tanks

LO2 Tank

Payload

Propulsion System

Figure 2. Notional Internal Volume Layout

III. Assumed Modes Method

The assumed modes method is a technique for computing the natural frequencies and
mode shapes of a given flexible structure. It is particularly well suited to the analysis of
preliminary vehicle designs of the type under study here, as a full finite element model of
the structure is not required.

The assumed modes method is based on Lagrange’s equations, namely the set of n scalar
equations

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= fi, i = 1, . . . , n (33)

where T is the total kinetic energy of the system, V is its potential energy, qi its ith generalized
coordinate (e.g., displacement or rotation), and f its ith generalized force (e.g., force or
moment). The assumed modes method expresses the displacement along the structure as an
expansion of the form

u(x, t) =
n∑

i=1

ψi(x)ui(t) (34)

where the shape functions {ψi(x), i = 1, . . . , n} are the assumed modes. These functions are
termed admissible functions, meaning that they are linearly independent, satisfy all of the
geometric boundary conditions of the structure, and possess all required derivatives.

The kinetic energy of the structure can then be written as

T =
1

2

∫ L

0

ρA

(
∂u

∂t

)2

dx (35)

where ρA(x) denotes the mass per unit length of the structure. This can be re-written in
matrix-vector form using the assumed modes expansion of Equation 34 as

T =
1

2
u̇TMu̇ (36)
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where u =
[
u1 · · · un

]T

and

M =

⎡
⎢⎣
m11 · · · m1n

...
. . .

mn1 mnn

⎤
⎥⎦ (37)

with

mij =

∫ L

0

ρAψi(x)ψj(x)dx (38)

Dealing similarly with the potential (strain) energy of the structure,

V =
1

2

∫ L

0

EI(x)

(
∂2u

∂x2

)2

dx (39)

gives the matrix-vector expression

V =
1

2
uTKu (40)

where

K =

⎡
⎢⎣
k11 · · · k1n
...

. . .

kn1 knn

⎤
⎥⎦ , (41)

with

kij =

∫ L

0

EI
∂2ψi(x)

∂x2

∂2ψj(x)

∂x2
dx (42)

Note that mij = mji and kij = kji for all i and j, i.e., the matrices M and K are always
symmetric.

The ith generalized force, i.e., the ith forcing term on the right-hand side of Equation 33,
that arises from the pressure distribution p acting on an HSV together with point forces
{uj : j = 1, . . . , m} applied by control surfaces at positions {xsj : j = 1, . . . , m} on the
vehicle, can be written as

fi(t) =

∫ L

0

p(x, t)ψi(x) dx+

m∑
j=1

uj(xsj , t)ψj(xsj) (43)

Forming the generalized force vector f =
[
f1 . . . fn

]T

, the n Lagrange’s Equations (Equa-

tions 33) become finally
Mü +Ku = f (44)

The natural frequencies and mode shapes of the structure are obtained from the unforced
harmonic dynamics of the system, i.e. setting f = 0 and ü = −ω2u. The resulting eigenvalue
problem is given by:

(ω2I −M−1K)u = 0 (45)

The natural frequencies of the structure are thus the square roots of the eigenvalues ofM−1K;
the corresponding mode shapes are given as linear combinations of the assumed modes, with
the coefficients of these expansions given by the eigenvectors of M−1K.
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The assumed modes approach can be thought of as bridging the gap between, at the one
extreme, the Rayleigh quotient method for estimating the fundamental natural frequency of
a flexible structure and, at the other extreme, a full finite element analysis. The Rayleigh
quotient method has the advantage of simplicity, but generally does not yield a very accurate
frequency value; furthermore, it cannot be generalized to give estimates for the higher-order
natural frequencies. The finite element technique, by contrast, is very general and powerful,
but achieves this at the expense of simplicity. The assumed modes method, spanning these
two limiting methods, allows the analyst to balance simplicity and accuracy of results as
desired.

The connection between the assumed modes method and the Rayleigh quotient can be
seen as follows. The Rayleigh quotient for a structure in bending, based on the expressions
for the total kinetic and potential energy of the structure, can be written as

R(V ) =

∫ L

0
EI

(
∂2V (x)

∂x2

)2

dx

∫ L

0
ρAV 2(x) dx

(46)

where V (x) is the assumed deflection function. It can be seen that this is identical to the
eigenproblem produced by the assumed modes method for the case of a single assumed mode,
ψ1(x) = V (x) , i.e., the assumed modes method with n = 1 reduces to the Rayleigh quotient
method. Note that, since the assumed deflection function in the Rayleigh quotient approach
will include not only the desired fundamental true mode shape but also components of the
higher-order modes, the resulting estimate for the fundamental natural frequency will always
be an over-estimate for the true value. A similar observation also applies to the assumed
modes method; however, increasing the number of assumed modes that are included, i.e.
increasing the dimension n of the matrices M and K, will cause this estimate to decrease,
improving convergence to the true value. Convergence to the lower true natural frequencies,
i.e., those of most physical interest, is normally quite fast (assuming the assumed modes are
chosen with some care), while the higher frequencies are slower to converge. By contrast,
since the Rayleigh quotient is calculated using a single deflection function, no such freedom
exists to control convergence.

The connections between the assumed modes method and the finite element method can
be summarized as follows. The assumed modes method is more accurately described as
the global assumed modes method, as the assumed mode shapes are defined over the entire
structure. If instead the structure were to be broken up into small elements, with separate
assumed modes defined to describe the deflections of each of these elements, and the elements
then assembled to cover the entire structure, this approach would form the basis of the finite
element method.

As noted previously, the shape functions {ψi(x), i = 1, . . . , n} that are used to set up
the assumed modes method must be selected to be admissible functions, meaning that they
are linearly independent, satisfy all of the geometric boundary conditions of the structure,
and possess all required derivatives. A free-free structure such as the HSV has no geomet-
ric boundary conditions, so any set of linearly independent, sufficiently smooth functions
actually can be used as an admissible basis. However, the convergence of the computed
frequencies to the true natural frequencies of the structure will typically be faster if the as-
sumed modes are selected with some care. In the present application, they are taken as the
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mode shapes of a uniform free-free beam in bending, as this one-dimensional structure can
be thought of as a very simplified model for the transverse vibrations of the flexible HSV.
These mode shapes can be computed from the Bernoulli-Euler model (i.e. shear deformation
and rotatory inertia neglected) of a uniform beam, with governing equation

EI
∂4u

∂x4
+ ρA

∂2u

∂t2
= 0 (47)

where u denotes the transverse deflection. In order to solve for the natural frequencies
and mode shapes of the beam, we assume simple harmonic motion, and can then write
u(x, t) = V (x) cos(ωt−α): substituting this into Equation 47 yields the eigenvalue problem

EI
d4V

dx4
− ω2ρAV = 0 (48)

or
d4V

dx4
− λ2V = 0 (49)

where λ2 = ω2ρA/(EI).
The general solution for this problem can be written in two forms:

V (x) = B1 sinhλx+B2 coshλx+B2 sinλx+B4 cosλx (50)

and
V (x) = C1e

λx + C2e
−λx + C3 sin λx+ C4 cosλx (51)

Four unknowns must be determined in order to solve for the natural frequency and shape
function (modulo scaling) corresponding to any given vibration mode: λ and essentially
three of either {Bk : k = 1, . . . , 4} or {Ck : k = 1, . . . , 4}. The two boundary conditions,
either geometric or force-type, that exist at each end of the beam, give the four required
constraints. For a free-free beam these conditions are that no shear force or moment can
exist at the ends, giving

∂2V

∂x2

∣∣∣∣
x=0,L

= 0 (52)

and
∂3V

∂x3

∣∣∣∣
x=0,L

= 0 (53)

Although the expansions given by Equations 50 and 51 give, in principle, identical results,
their behavior in practical computations can be very different. In fact, if Equation 50 is used
to calculate the high-order mode shapes, severe rounding error problems will typically be
encountered, to the point that the computed mode shapes bear essentially no resemblance
to the actual free-free beam modes. The reason for this behavior arises from the expansions
sinh λx = (eλx − e−λx)/2 and cosh λx = (eλx + e−λx)/2: for large λx, it can be noted that
sinh λx ≈ cosh λx which is a large quantity. But it can be shown that the coefficients are
approximately equal and opposite for the higher-order modes, so the expansion, Equation 50,
involves subtracting two large, nearly equal quantities. Such near-cancellation is a classic
way of introducing severe rounding errors in any computation carried out in finite-precision
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Figure 3. Modes Shapes for a Free-free Beam with Constant Properties

arithmetic, leading to the observed difficulties. If the expansion Equation 51 is used instead,
such problems do not arise, giving the mode shapes plotted in Figure 3.

Another way of avoiding these numerical issues would be to make use of an alternative
set of admissible functions as assumed modes. A set that is currently under study for the
HSV problem is that of the Chebyshev polynomials {Ti(x) : i = 0, 1, . . .}. These linearly
independent functions (orthogonal in a certain sense) are defined over the range x ∈ [−1, 1].
Functions that are defined over any other desired range can be obtained by a linear transfor-
mation of the independent variable x. The Chebyshev polynomials possess certain desirable
properties that render them useful in numerical analysis: notably, a given function of a real
variable can be approximated by an expansion in terms of Chebyshev polynomials of pre-
scribed degree more accurately than a truncated Taylor series of the same degree. In fact, it
can be shown that the Chebyshev expansion of degree n for a given function f(x) is a close
approximation to the polynomial fit to f(x) of degree n that minimizes the maximum error
in the fit at any point.

Of more importance in the present application, the Chebyshev polynomials can be com-
puted very simply by means of their defining three-term recursion

Ti+1(x) = 2xTi(x) − Ti−1(x), i = 2, 3, . . . (54)

with this recursion initialized by T0(x) = 1 and T1(x) = x. (Note that, in structural
terms,T0(x) can be thought of as a rigid-body translation mode and T1(x) a rigid-body
rotation mode). Thus, for instance,T2(x) = 2x2−1, T3(x) = 4x3−3x, etc. However, there is
no need to store any but the first two polynomials explicitly; it is more efficient to calculate
them as needed using the three-term recursion. Note that the Chebyshev polynomials with

13 of 22

American Institute of Aeronautics and Astronautics



even indices are even functions of x, and those with odd indices are odd functions. Also,
these dimensionless functions are bounded by values -1 and +1, as shown in Figure 4, and
are, to a first approximation and modulo scaling, quite similar to the mode shapes of the
uniform free-free beam, as can be seen by comparing Figures 3 and 4. The investigation of
a Chebyshev polynomial-based assumed modes approach to the HSV problem is underway
to determine whether there are any advantages to this approach.
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Figure 4. Chebyshev Polynomials, {Ti(x) : i = 1, . . . , 5}

A key reason for carrying out the assumed modes analysis of the HSV was to determine
how the structural dynamics of the vehicle change as propellant is consumed during the
mission. Figures 5 through 6 provide this information by showing the first five flexible mode
shapes for propellant quantities ranging from 100% to 0%; for clarity, propellant quantities
corresponding to the initial rocket phase are shown in green, while those corresponding to
the scramjet phase are shown in blue. It can be seen that, as a general rule, the deflection
of the midsection of the vehicle increases as propellant quantity decreases,i.e., as the HSV
tanks empty: since these tanks are grouped around the midsection, this observation makes
sense. Note also that the slopes of the mode shapes at the positions of the control surfaces
and of the proposed canard vary as a function of propellant quantity, leading to changes in
closed-loop behavior during the course of the flight. The implications of this variation for
closed-loop performance and robustness are currently under study.

Note that Figures 5 through 6 were computed using an assumed modes model containing
six free-free beam flexible modes. To examine whether this number is adequate, Figure 7
demonstrates how the computed natural frequencies of the HSV converge to the true frequen-
cies as the number of assumed modes is increased. Considering the fundamental frequency,
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Figure 5. Evolution of First Mode Shape During Flight

it can be seen that using a single assumed mode gives a significant over-estimate for the true
frequency (the method in this case reduces to the Rayleigh quotient); increasing the num-
ber of assumed modes causes the computed frequency to approach the true value quickly.
At least two assumed modes are needed to produce an estimate for the second natural fre-
quency, with an increased number of assumed modes leading to an improved estimate for
this frequency; and so on. Figure 7 demonstrates the general rule that the estimates for
the lowest natural frequencies, i.e., those of the greatest physical interest, are the first to
converge under the assumed modes method.

Figure 8 shows the effect of propellant consumption on the natural frequencies of the first
two flexible body modes of the HSV (again computed using a six assumed mode model):
it can be seen that the frequencies increase as propellant is consumed, i.e., as the vehicle
becomes lighter, which is expected. In addition, the HSV will also experience a significant
increase in temperature as a result of aerodynamic heating as the mission progresses. This
temperature increase will in turn lead to a noticeable decrease in the stiffness of its structural
members, leading to another form of variation in its flexible body dynamics. Figure 8
provides a preliminary demonstration of this effect by plotting the natural frequencies that
are obtained for an increase in HSV temperature from 70◦F to 1500◦F: the corresponding
change in the Young’s modulus of the structural members is based on the data presented in
Vosteen6 for RS-120 titanium alloy. In this preliminary analysis, the structural temperature
was simply increased uniformly throughout the HSV: the result is a decrease in natural
frequencies, but no change in the corresponding mode shapes. (In assumed modes terms, a
uniform change in temperature corresponds to a uniform decrease in Young’s modulus E, and
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so to a simple scaling of the stiffness matrix K in Equation 40. This scales the eigenvalues
(i.e., the natural frequencies) obtained from the eigenvalue problem Equation 45; however,
the eigenvectors (mode shapes) are essentially unaffected.) A subject that is currently under
investigation is an analysis of the actual variation in temperature not only along the vehicle,
but also as a function of time throughout the mission. This improved analysis will yield not
only natural frequencies, but also mode shapes, for the vehicle that take into account the
evolution of both propellant mass and vehicle temperature distribution profile as the flight
progresses. It is expected that such a model will provide more accurate estimates of the
actual evolution of the HSV flexible body dynamics throughout its mission.
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IV. Analysis of the Flight Dynamics

The analysis of flexible effects are important in the study of air-breathing hypersonic
aircraft. The effect of the flexibility will cause changes to the overall flow field, thus altering
the pressure distribution on the vehicle. For a hypersonic aircraft, the flexibility effects are
exacerbated by the high level of coupling that is present in the system. Changes in the
pressure distribution due to flexibility can be manifested as perturbations in thrust. As
for all aircraft, the flexibility of the fuselage changes the angle-of-incidence for the control
surfaces, thus affecting the control surfaces’ ability to impart a desired control moment on
the vehicle.

The longitudinal dynamics of a flexible aircraft, written in the stability axis coordinate
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system are:7

V̇t =
Fn cosα−D

m
− g sin(θ − α) (55)

α̇ =
−L− Fn sinα

mVt

+Q+
g

Vt

cos(θ − α) (56)

Q̇ =
M

Iyy

(57)

ḣ = Vt sin(θ − α) (58)

η̈i = −2ζiωiη̇i − ω2
i ηi +Ni, i = 1, . . . , n (59)

where Vt is the true airspeed, Fn is the net thrust, D is the drag force, L is the lift, α is the
angle-of-attack, θ is the pitch attitude, Q is the pitch rate, M is the pitching moment, Iyy

is the moment-of-inertia, h is the altitude, ωn is the structural natural frequency, ζ is the
damping ratio, ηi is the modal coordinate for the ith mode, and Ni is the generalized force
corresponding to the ith mode. In this case, the structural damping is given by ζi = 0.02 and
the structural dynamics are mass normalized. Any coupling between the rigid-body states
and the elastic generalized coordinates occurs through the forces and moments. The forces
and moments are dependent upon the pressure distribution, which is a function of the elastic
deflection. In turn the deflection is a function of the generalized forces, Ni.

We will work with the equations-of-motion linearized about a reference constant altitude,
constant Mach flight condition. We have assumed that Lα̇ and Mα̇ are negligible. We shall
assume that three elastic modes are included in the aircraft model. The state vector is
defined as

x =
[
ΔVT Δα ΔQ Δh Δθ η1 η̇1 . . . η̇3

]T

(60)

and the control vector is

u =
[
Δδe Δδc Δδt

]T

(61)

The corresponding state matrix is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xv Xα 0 Xh −g Xη1 0 Xη2 · · · 0
Zv

VT0

Zα

VT0

1−Zq

VT0

Zh

VT0
0 Zη1 0 Zη2 · · · 0

Mv Mα Mq Mh 0 Mη1 0 Mη2 · · · 0

0 −V0 0 0 V0 0 0 0 . . . 0

0 0 1 0 0 0 0 0 . . . 0

0 0 0 0 0 1 0 0 . . . 0

N1,v N1,α 0 N1,h 0 N1,η1 N1,η̇1 N1,η2 . . . 0

0 0 0 0 0 0 0 0 . . . 0

N2,v N2,α 0 N2,h 0 N2,η1 0 N2,η2 . . . 0

0 0 0 0 0 0 0 0 . . . 1

N3,v N3,α 0 N3,h 0 N3,η1 0 . . . N3,η3 N3,η̇3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(62)
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and the control influence matrix is

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xδe Xδc Xδt

Zδe

VT0

Zδc

VT0

Zδt

VT0

Mδe Mδc Mδt

0 0 0

0 0 0

N1,δe N1,δc N1,δt

0 0 0

N2,δe N2,δc N2,δt

0 0 0

N3,δe N3,δc N3,δt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(63)

The definitions of the stability and control derivatives for a hypersonic vehicle are different
from their textbook definitions (see Stevens and Lewis8 for example) because there are
functional dependencies that are present for hypersonic aircraft that can be neglected for
subsonic aircraft. The main driver being that air-breathing hypersonic aircraft have an
engine that is highly integrated into the airframe. Thrust is now dependent upon angle-of-
attack, in addition to Mach Number and altitude. The lift and pitching moment are also
functions of the thrust setting in addition to the states (e.g., Q and α) and the elevator.
Therefore, these relationships must be captured in the stability and control derivatives. For
example,

Xα =
1

m

(
∂T

∂α
cosα0 − ∂D

∂α
+ L0

)
(64)

where the subscript ()0 denotes the trim value of a particular variable. The complete set
linearized stability and control derivatives for a rigid hypersonic vehicle are found in Refer-
ence 9.

Our primary interest here will be on how the poles and zeros of the linearized system
migrate as the vehicle mass changes. The issue of temperature effects on the structural
frequencies and linearized aircraft dynamics are also addressed in Reference 10.

Given in Figure 9 is an example of how the poles and zeros migrate as a function of
mass change for a cruise at Mach 8 and 85,000 ft. It was assumed that the temperature of
the structure was a constant 100 ◦F. The transmission zeros in this case are for the input
vector, u = [δe δt]

T , and for the output vector y = [Vt γ]
T . In each case that was analyzed,

the short period dynamics are unstable, and the poles move away from the imaginary axis
as the mass of the vehicle decreases. Note also as mass decreases, there is a corresponding
decrease in the pitch moment-of-inertia. The short-period poles can be approximated by
s = Zα/(2Vt) ±

√
Mα for Mα > 0 as in this case. Thus, one can see that the 1/m term in

the Zα derivative will become larger as m deceases. The same holds true for the 1/Iyy term
in Mα. As seen in the section above, a reduction of mass corresponds to an increase in the
natural frequencies of the mode shapes. For example, there is a 3 rad/s migration of the
first flexible mode frequency from the beginning of the cruise to the end of the cruise. Upon
closer investigation, the transmission zeros associated with the modal coordinates shift by
the same amount as the poles as the mass of the vehicle is changed.

Note also that in Figure 9 that there are real, right-half plane transmission zeros, that
have a near mirror image in the left-half plane. The presence of these right-half plane zeros

19 of 22

American Institute of Aeronautics and Astronautics



Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

−15 −10 −5 0 5 10 15
−200

−150

−100

−50

0

50

100

150

200

Decreasing Mass

Figure 9. Pole-Zero Map for Cruise at Mach 8, 85000 ft

is due to the choice of elevator as the input and the flight path angle, γ as the output. To
increase γ requires a trailing edge up deflection of the elevator. On an HSV, the elevators
are large, and as such make a significant contribution to the total lift on the vehicle. When
the elevator is deflected trailing edge up, the overall lift on the aircraft is decreased, causing
an instantaneous drop in the center-of-gravity of the aircraft, which is characteristic of the
non-minimum phase zero.

Because the aircraft is unstable and non-minimum phase, the control design problem
becomes very difficult because the non-minimum phase zero imparts a real limit on the
maximum achievable bandwidth of the control. Thus, it becomes necessary to change the
configuration of the vehicle in order to mitigate the effects of the right-half plane zero. In
Reference 9, the effects of adding a canard to both a rigid body HSV model and flexible
HSV model are addressed. In the latter case, the structural model is more complex due
to the assumptions made in constructing it, and as a result, there is significant inertial
coupling between the rigid-body states and the flexible states. The analysis carried out
in Reference 9 shows that there exists a static gain K, that in the case of the linearized
rigid aircraft dynamics, that can be chosen to place the transmission zeros at an arbitrary
location. The optimal location of the non-minimum phase zero is infinitely far to the right
of the imaginary axis, thus giving the control designer infinite bandwidth. However, it was
shown that the effects of flexibility on the transmission zeros will degrade the performance of
the canard if it is ganged to the elevator by means of a static gain. What was thought to be
an optimally placed non-minimum phase zero will now be brought closer to the imaginary
axis, thus resulting in a limitation of the controller bandwidth.
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Examining the effect of small perturbations in the Zδc control derivative will result in
what are not insignificant changes in the transmission zeros. In Figure 10 we show the
nominal NMP transmission zero location at 11.2 rad/s for the input pair u = [δe δt]

T which
is equivalent to no interconnect gain between the elevator and canard. We then calculate an
interconnect gain by letting Zδe +KZδc = 0. This places the NMP zero at 20 rad/sec. Next,
we perturb the element in the control influence matrix that corresponds to Zδc by ±10%
and plot the migration of the system zeros. The NMP zeros change by as 20% due to 10 %
increase in the Zδc , while a 10% change results from a 10% decrease. This indicates that the
changes in Zδc that occur due to changes in the local angle-of-attack that are caused by the
deflection of the fuselage will make the control design that much more challenging.
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Figure 10. Changes in Transmission Zeros due to Perturbations in Zδc

V. Conclusions

A method for estimating the structural dynamics of an air-breathing hypersonic aircraft
has been given. The method that is outlined in known as the assumed modes method. A set
of basis functions that satisfy the geometric boundary conditions are assumed to be known.
Using the mass and stiffness distributions of the structure, the basis functions are used to
form an eigenvalue problem that gives the estimated frequencies and mode shapes for the
structure. As the number of assumed modes increases, the frequencies approach those of the
actual structure.

The mode shapes for a generic HSV configuration were estimated. Included in the analysis
were the effects of fuel consumption and temperature on the mode shapes and frequencies.
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It was shown that mass has a significant influence on the natural frequencies, with the
frequencies increasing as mass decreases. An effect on the mode shapes is seen, with some
variance in the amplitude and the locations of the nodes. The effect of temperature on the
structural dynamics was also modelled. The frequencies of the structure are dependent upon
the Young’s Modulus of the structure, which is a function of temperature. The effects of
a uniform increase in temperature are to decrease the frequencies, but not affect the mode
shapes.

Finally, the effects of mass change on the linearized vehicle were analyzed. The main
concern was directed towards the short-period dynamics of the vehicle, which are open-loop
unstable. The change in mass due to fuel burn moves the poles away from the imaginary
axis as expected. In turn, the non-minimum phase zeros move farther away, but still impose
a bandwidth restriction on the system due to their proximity to the right-half plane pole.
The effects of a canard on the zero location were also studied. It was shown that for 10%
variation in the lift due to canard control derivative, the non-minimum phase transmission
zero can move by 20%. The movement of this zero closer to the unstable pole will have an
adverse effect on the control system as the bandwidth will be reduced.
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